Skip to main content
Log in

Comparison of Numerical Formulations for Two-phase Flow in Porous Media

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Numerical approximation based on different forms of the governing partial differential equation can lead to significantly different results for two-phase flow in porous media. Selecting the proper primary variables is a critical step in efficiently modeling the highly nonlinear problem of multiphase subsurface flow. A comparison of various forms of numerical approximations for two-phase flow equations is performed in this work. Three forms of equations including the pressure-based, mixed pressure–saturation and modified pressure–saturation are examined. Each of these three highly nonlinear formulations is approximated using finite difference method and is linearized using both Picard and Newton–Raphson linearization approaches. Model simulations for several test cases demonstrate that pressure based form provides better results compared to the pressure–saturation approach in terms of CPU_time and the number of iterations. The modification of pressure–saturation approach improves accuracy of the results. Also it is shown that the Newton–Raphson linearization approach performed better in comparison to the Picard iteration linearization approach with the exception for in the pressure–saturation form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abriola LM, Pinder GF (1985a) A multiphase approach to the modeling of porous media contamination by organic compounds 1. Equation development. Water Resour Res 21(1):11–18

    Article  Google Scholar 

  • Abriola LM, Pinder GF (1985b) A multiphase approach to the modeling of porous media contamination by organic compounds 2. Numerical Simulation. Water Resour Res 21(1):19–26

    Article  Google Scholar 

  • Abriola LM, Rathfelder K (1993) Mass balance errors in modeling two-phase immiscible flows: causes and remedies. Adv Water Resour 16:223–239

    Article  Google Scholar 

  • Abroila LM (1989) Modeling multiphase migration of organic chemicals in groundwater systems—a review and assessment. Environ Health Perspect 83:117–143

    Article  Google Scholar 

  • Ataie-Ashtiani B, Hassanizadeh SM, Oostrom M, Celia MA, White MD (2001) Effective parameters for two-phase flow in a porous medium with periodic heterogeneities. J Contam Hydrol 49(1–2):87–109

    Article  Google Scholar 

  • Ataie-Ashtiani B, Hassanizadeh SM, Celia MA (2002) Effects of heterogeneities on capillary pressure–saturation-relative permeability relationships. J Contam Hydrol 56(3–4):175–192

    Article  Google Scholar 

  • Ataie-Ashtiani B, Hassanizadeh SM, Oung O, Weststrate FA, Bezuijen A (2003) Numerical modelling of two-phase flow in a geocentrifuge. Environ Modell Softw 18:231–241

    Article  Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York, p 568

    Google Scholar 

  • Binning P, Celia MA (1999) Practical implementation of the fractional flow approach to multi-phase flow simulation. Adv Water Reour 22(5):461–478

    Article  Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Paper 3, 27 Civil Engineering Department, Colorado State University, Fort Collins

    Google Scholar 

  • Buckley SE, Leverett MC (1942) Mechansim of fluid displacement in sands. Trans Am Min Metall Pet Eng 146:107–116

    Google Scholar 

  • Celia MA, Binning P (1992) A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow. Water Resour Res 28(10):2819–2828

    Article  Google Scholar 

  • Celia MA, Boulouton ET, Zarba RL (1990) A general mass-conservation numerical solution for the unsaturated flow equation. Water Resour Res 26(7):1483–1496

    Article  Google Scholar 

  • Chen J, Hopmans JW, Grismer ME (1999) Parameter estimation of two-fluid capillary pressure–saturation and permeability functions. Adv Water Resour 22(5):479–493

    Article  Google Scholar 

  • Faust CR (1985) Transport of immiscible fluids within and below the unsaturated zone: a numerical. Water Resour Res 21(4):587–596

    Article  Google Scholar 

  • Forsyth PA (1988) Comparison of the single-phase and two-phase numerical model formulation for saturated-unsaturated groundwater-flow. Comput Methods Appl Mech Eng 69:243–259

    Article  Google Scholar 

  • Forsyth PA, Wu YS, Pruess K (1995) Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media. Adv Water Resour 18:25–38

    Article  Google Scholar 

  • Forsyth PA, Unger AJA, Sudicky EA (1998) Nonlinear iteration methods for nonequilibrium multiphase subsurface flow. Adv Water Resour 21:433–499

    Article  Google Scholar 

  • Havercamp R et al (1977) A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci Soc Am J 41:287–294

    Google Scholar 

  • Huyakorn PS, Pinder GF (1983) Computational methods in subsurface flow. Academic Press, London

    Google Scholar 

  • Huyakorn PS, Panady S, Wu YS (1994) A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media 1. Formulation. J Contam Hydrol 16:109–130

    Article  Google Scholar 

  • Kaluarachchi JJ, Parker JC (1989) An efficient finite element method for modeling multiphase flow. Water Resour Res 25(1):43–54

    Article  Google Scholar 

  • Kees CE, Miller CT (2002) Higher order time integration methods for two-phase flow. Adv Water Resour 25(2):159–177

    Article  Google Scholar 

  • Kueper BH, Frind EO (1991a) Two-phase flow in heterogeneous porous media 1. Model development. Water Resource Research 6(27):1049–1057

    Article  Google Scholar 

  • Kueper BH, Frind EO (1991b) Two-phase flow in heterogeneous porous media, 2. Model application. Water Resour Res 6(27):1058–1070

    Google Scholar 

  • McWhorter DB, Sunada DK (1990) Exact integral solutions for two-phase flow. Water Resour Res 26(3):399–414

    Google Scholar 

  • Morgan K, Lewis RW, Roberts PM (1984) Solution of two-phase flow problems in porous media via an alternating-direction finite element method. Appl Math Model 8:391–396

    Article  Google Scholar 

  • Moridies GJ, Reddell DL (1991) Secondary water recovery by air injection. 1. The concept and the mathematical and numerical model. Water Resour Res 27:2337–2352

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 25:2187–2193

    Google Scholar 

  • Osborne M, Sykes J (1986) Numerical modeling of immiscible organic transport at the Hyde Park landfill. Water Resour Res 22(1):25–33

    Article  Google Scholar 

  • Pantazidou M, Abu-Hassanein ZS, Riemer MF (2000) Centrifuge study of DNAPL transport in granular media. J Geotech Geoenviron Eng ASCE 126(2):105–115

    Article  Google Scholar 

  • Parker JC (1989) Multiphase flow and transport in porous media. Rev Geophys 27(3):311–328

    Article  Google Scholar 

  • Parker JC, Lenahrd RJ, Kuppusamy T (1987) A parametric model for constitutive properties governing multiphase flow in porous media. Water Resour Res 23(4):618–624

    Article  Google Scholar 

  • Peaceman DW, Rachford HH (1955) The numerical solution of parabolic and elliptic differential equations. J Soc Ind Appl Math 3:28–41

    Article  Google Scholar 

  • Pinder GF, Abriola LM (1986) On the simulation of nonaqueous phase organic compounds in the subsurface. Water Resour Res 22(9):109S–119S

    Article  Google Scholar 

  • Pruess K (1987) TOUGH users guide. U.S. Nuclear Regulatory Commission, Washington, DC, CR-4645

  • Shodja HM, Feldkamp JR (1993) Analysis of two-phase flow of compressible immiscible fluids through nondeformable porous media using moving finite elements. Transp Porous Med 10:203–219

    Article  Google Scholar 

  • Sleep BE, Sykes JF (1989) Modeling the transport of volatile organics in variably saturated media. Water Resour Res 25:81–92

    Article  Google Scholar 

  • Touma J, Vauclin M (1986) Experimental and numerical analysis of two-phase infiltration in a partially saturated soil. Transp Porous Med 1:27–55

    Article  Google Scholar 

  • Van Genuchten MTh (1980) A closd-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Google Scholar 

  • Vauclin M (1989) Flow of water and air in soils: theoretical and experimental aspects. In: Morel-Seytoux HJ (ed) Unsaturated flow in hydrologic modelling, theory and practice. Kluwer, Dordrecht, pp 53–91

    Google Scholar 

  • Wu Y-S, Forsyth PA (2001) On the selection of primary variables in numerical formulation for modeling multiphase flow in porous media. J Contam Hydrol 48(3–4):277–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ataie-Ashtiani.

Appendices

Appendix A: Derivation of Coefficients of Two-fluid-phase Equations for Pressure–Saturation Formulations

1.1 PSP Elemental Matrices

Using iterative increment equations it is possible to put Eq. 15 in the form of Eq. 10 where:

$$ B_{{w_{j} }}^{n + 1,m} = - {\frac{{\lambda_{{w_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}{{\Updelta z^{2} }}};\quad C_{{w_{j} }}^{n + 1,m} = {\frac{\varphi }{\Updelta t}} $$
(A1,2)
$$ D_{{w_{j} }}^{n + 1,m} = {\frac{{\lambda_{{w_{{j + {\frac{1}{2}}}} }}^{n + 1,m} + \lambda_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{\Updelta z^{2} }}};\quad F_{{w_{j} }}^{n + 1,m} = - {\frac{{\lambda_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{\Updelta z^{2} }}} $$
(A3,4)
$$ R_{{w_{j} }}^{n + 1,m} = - f_{w} \left( {S_{w}^{n + 1} ,P_{w}^{n + 1} } \right)^{m} $$
(A5)
$$ B_{{nw_{j} }}^{n + 1,m} = - {\frac{{\lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}{{\Updelta z^{2} }}};\quad C_{{nw_{j} }}^{n + 1,m} = - {\frac{\varphi }{\Updelta t}} $$
(A6,7)
$$ D_{{nw_{j} }}^{n + 1,m} = {\frac{{\lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1,m} + \lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{\Updelta z^{2} }}};\quad F_{{nw_{j} }}^{n + 1,m} = - {\frac{{\lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{\Updelta z^{2} }}}; $$
(A8,9)
$$ R_{{nw_{j} }}^{n + 1,m} = - f_{nw} (S_{w}^{n + 1} ,P_{w}^{n + 1} )^{m} $$
(A10)

The other coefficients of Eq. 10 are zero.

1.2 PSN Elemental Matrices

Applying the Newton–Raphson method to Eq. 15 yields

$$ \begin{aligned} A_{{w_{j} }}^{{n + 1,m}} & = {\frac{{\partial R_{{w_{j} }}^{{n + 1,m}} }}{{\partial S_{{w_{{j - 1}} }} }}} = {\frac{{\partial R_{{w_{j} }}^{{n + 1,m}} }}{{\partial \lambda _{{w_{{j - {\frac{1}{2}}}} }}^{{n + 1,m}} }}}\,{\frac{{d\lambda _{{w_{{j - {\frac{1}{2}}}} }}^{{n + 1,m}} }}{{dS_{{_{{w_{{j - 1}} }} }}^{{n + 1,m}} }}} \hfill \\ & = {\frac{1}{2}}\,{\frac{{P_{{w_{j} }}^{{n + 1,m + 1}} - P_{{w_{{j - 1}} }}^{{n + 1,m + 1}} - \rho _{w} g\Updelta z}}{{\Updelta z^{2} }}}\,{\frac{{d\lambda _{{w_{{j - 1}} }}^{{n + 1,m}} }}{{dS_{{_{{w_{{j - 1}} }} }}^{{n + 1,m}} }}} \hfill \\ \end{aligned} $$
(A11)
$$ \begin{gathered} C_{{w_{j} }}^{n + 1,m} = {\frac{{\partial R_{{w_{j} }}^{n + 1,m} }}{{\partial S_{{w_{j} }} }}} = {\frac{{dR_{{w_{j} }}^{n + 1,m} }}{{dS_{{w_{j} }}^{n + 1,m} }}} + {\frac{{\partial R_{{w_{j} }}^{n + 1,m} }}{{\partial \lambda_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{d\lambda_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{w_{j} }}^{n + 1,m} }}{{\partial \lambda_{{w_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{d\lambda_{{w_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}\,{{dS_{{_{{w_{j} }} }}^{n + 1,m} }}} \hfill \\ = {\frac{\varphi }{\Updelta t}} + {\frac{1}{2}}\,{\frac{{\partial \lambda_{{w_{j} }}^{n + 1,m} }}{{\partial S_{{_{{w_{j} }} }}^{n + 1,m} }}}\,{\frac{{ - P_{{w_{j + 1} }}^{n + 1,m + 1} + 2P_{{w_{j} }}^{n + 1,m + 1} - P_{{w_{j - 1} }}^{n + 1,m + 1} }}{{\Updelta z^{2} }}} - {\frac{{\rho_{w} g}}{\Updelta z}} \hfill \\ \end{gathered} $$
(A12)
$$ \begin{aligned} E_{{w_{j} }}^{{n + 1,m}} &= {\frac{{\partial R_{{w_{j} }}^{{n + 1,m}} }}{{\partial S_{{w_{{j + 1}} }} }}} = {\frac{{\partial R_{{w_{j} }}^{{n + 1,m}} }}{{\partial \lambda _{{w_{{j + {\frac{1}{2}}}} }}^{{n + 1,m}} }}}\,{\frac{{d\lambda _{{w_{{j + {\frac{1}{2}}}} }}^{{n + 1,m}} }}{{dS_{{_{{w_{{j + 1}} }} }}^{{n + 1,m}} }}} \hfill \\ & = {\frac{1}{2}}\,{\frac{{P_{{w_{j} }}^{{n + 1,m + 1}} - P_{{w_{{j + 1}} }}^{{n + 1,m + 1}} - \rho _{{`w}} g\Updelta z}}{{\Updelta z^{2} }}}\,{\frac{{d\lambda _{{w_{{j + 1}} }}^{{n + 1,m}} }}{{dS_{{_{{w_{{j + 1}} }} }}^{{n + 1,m}} }}} \hfill \\ \end{aligned} $$
(A13)
$$ A_{{nw_{j} }}^{n + 1,m} = {\frac{{\partial R_{{nw_{j} }}^{n + 1,m} }}{{\partial S_{{w_{j - 1} }} }}} = {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial \lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{d\lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j - 1} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial P_{{c_{j - 1} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j - 1} }}^{n + 1,m} }}{{dS_{{_{{w_{j - 1} }} }}^{n + 1,m} }}} $$
(A14)
$$ \begin{gathered} C_{{nw_{j} }}^{n + 1,m} = {\frac{{\partial R_{{nw_{j} }}^{n + 1,m} }}{{\partial S_{{w_{j} }} }}} = - {\frac{\varphi }{\Updelta t}} + {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial \lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{d\lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j} }} }}^{n + 1,m} }}} \hfill \\ + {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial \lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{d\lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial P_{{c_{j} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j} }}^{n + 1,m} }}{{dS_{{_{{w_{j} }} }}^{n + 1,m} }}} \hfill \\ \end{gathered} $$
(A15)
$$ E_{{nw_{j} }}^{n + 1,m} = {\frac{{\partial R_{{nw_{j} }}^{n + 1,m} }}{{\partial S_{{w_{j + 1} }} }}} = {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial \lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{d\lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j + 1} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial P_{{c_{j + 1} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j + 1} }}^{n + 1,m} }}{{dS_{{_{{w_{j + 1} }} }}^{n + 1,m} }}} $$
(A16)

where the capillary capacity \( c_{w} = {\frac{{dP_{c}^{{}} }}{{dS_{{_{w} }}^{{}} }}} \) (Touma and Vauclin 1986) and \( {\frac{{d\lambda_{nw}^{{}} }}{{dS_{{_{w} }}^{{}} }}} \) is negative, and \( {\frac{{d\lambda_{w}^{{}} }}{{dS_{{_{w} }}^{{}} }}} \) is positive. The other coefficients of Eq. 10 are the same as those of equation PSP elemental matrix.

Appendix B: Derivation of Coefficients of Two-fluid-phase Equations for Pressure–Saturation-modified Formulations

2.1 PSMP Elemental Matrices

Using finite difference solution of the modified pressure–saturation equation with a Picard iteration scheme for the nonlinear coefficients for Eq. 20 yields

$$ \begin{aligned} - & \varphi {\frac{{S_{{w_{j} }}^{n + 1} - S_{{w_{j} }}^{n} }}{\Updelta t}} - {\frac{{(\lambda_{nw} .{\frac{{\partial P_{w} }}{\partial z}})_{{j + {\frac{1}{2}}}}^{n + 1} - (\lambda_{nw} .{\frac{{\partial P_{w} }}{\partial z}})_{{j - {\frac{1}{2}}}}^{n + 1} + (\lambda_{nw} cc_{w} {\frac{{\partial S_{w} }}{\partial z}})_{{j + {\frac{1}{2}}}}^{n + 1} - (\lambda_{nw} cc_{w} .{\frac{{\partial S_{w} }}{\partial z}})_{{j - {\frac{1}{2}}}}^{n + 1} }}{\Updelta z}} \\ + & \rho_{nw} g{\frac{{\lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1} - \lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1} }}{\Updelta z}} = 0 \\ \end{aligned} $$
(B1)
$$ A_{{nw_{j} }}^{n + 1,m} = \left( {\lambda_{nw} cc_{w} } \right)_{{j - {\frac{1}{2}}}}^{n + 1,m} ;\quad C_{{nw_{j} }}^{n + 1,m} = - {\frac{\varphi }{\Updelta t}} - \left( {\lambda_{nw} cc_{w} } \right)_{{j - {\frac{1}{2}}}}^{n + 1,m} - \left( {\lambda_{nw} cc_{w} } \right)_{{j + {\frac{1}{2}}}}^{n + 1,m} ; $$
(B2,3)
$$ E_{{nw_{j} }}^{n + 1,m} = \left( {\lambda_{nw} cc_{w} } \right)_{{j + {\frac{1}{2}}}}^{n + 1,m} $$
(B4)

Where the \( cc_{w} = {\frac{{dS_{w} }}{{dP_{c} }}} \) is the inverse of capillary capacity c w . The other coefficients of Eq. 10 are the same as those of equation PSP elemental matrix.

2.2 PSMN Elemental Matrices

Applying the Newton–Raphson method to Eq. 20 yields

$$ A_{{nw_{j} }}^{n + 1,m} = {\frac{{\partial R_{{nw_{j} }}^{n + 1,m} }}{{\partial S_{{w_{j - 1} }} }}} = {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial \lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{d\lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j - 1} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial cc_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{dcc_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j - 1} }} }}^{n + 1,m} }}} $$
(B5)
$$ C_{{nw_{j} }}^{n + 1,m} = {\frac{{\partial R_{{nw_{j} }}^{n + 1,m} }}{{\partial S_{{w_{j} }} }}} = {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial \lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{d\lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j - 1} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial cc_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{dcc_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j - 1} }} }}^{n + 1,m} }}} $$
(B6)
$$ E_{{nw_{j} }}^{n + 1,m} = {\frac{{\partial R_{{nw_{j} }}^{n + 1,m} }}{{\partial S_{{w_{j + 1} }} }}} = {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial \lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{d\lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j + 1} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{wn_{j} }}^{n + 1,m} }}{{\partial cc_{{w_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{dcc_{{w_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}{{dS_{{_{{w_{j + 1} }} }}^{n + 1,m} }}} $$
(B7)

where \( {\frac{{dcc_{w} }}{{dS_{w} }}} = {\frac{{d^{2} P_{c} }}{{dS^{2}_{w} }}} \) (Eq. 24a,b). The other coefficients of Eq. 10 are the same as those of equation PSP elemental matrix.

Appendix C: Derivation of Coefficients of Two-fluid-phase Equations for Pressure–Pressure Formulations

3.1 PPP Elemental Matrices

Applying the Picard method to Eq. 25a,b yields

$$ \left\{ \begin{gathered} \varphi c_{{w_{j} }}^{n + 1} {\frac{{P_{{nw_{j} }}^{n + 1} - P_{{nw_{j} }}^{n} - P_{{w_{j} }}^{n + 1} - P_{{w_{j} }}^{n} }}{\Updelta t}} \hfill \\ - {\frac{{\left( {\lambda_{w} .{\frac{{\partial P_{w} }}{\partial z}}} \right)_{{j + {\frac{1}{2}}}}^{n + 1} - (\lambda_{w} .{\frac{{\partial P_{w} }}{\partial z}})_{{j - {\frac{1}{2}}}}^{n + 1} }}{\Updelta z}} + \rho_{w} g{\frac{{\lambda_{{w_{{j + {\frac{1}{2}}}} }}^{n + 1} - \lambda_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1} }}{\Updelta z}} = 0 \hfill \\ - \varphi c_{{w_{j} }}^{n + 1} {\frac{{P_{{nw_{j} }}^{n + 1} - P_{{nw_{j} }}^{n} - P_{{w_{j} }}^{n + 1} - P_{{w_{j} }}^{n} }}{\Updelta t}} \hfill \\ - {\frac{{(\lambda_{nw} .{\frac{{\partial P_{nw} }}{\partial z}})_{{j + {\frac{1}{2}}}}^{n + 1} - (\lambda_{nw} .{\frac{{\partial P_{nw} }}{\partial z}})_{{j - {\frac{1}{2}}}}^{n + 1} }}{\Updelta z}} + \rho_{nw} g{\frac{{\lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1} - \lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1} }}{\Updelta z}} = 0 \hfill \\ \end{gathered} \right. $$
(C1)
$$ \left\{ \begin{gathered} y_{w} \left( {P_{nw}^{n + 1} ,P_{w}^{n + 1} } \right)^{m + 1} = \varphi c_{{w_{j} }}^{n + 1,m} {\frac{{P_{{nw_{j} }}^{n + 1,m + 1} - P_{{nw_{j} }}^{n} - P_{{w_{j} }}^{n + 1,m + 1} - P_{{w_{j} }}^{n} }}{\Updelta t}} \hfill \\ - {\frac{{\lambda_{{w_{{j + {\frac{1}{2}}}} }}^{n + 1,m} {\frac{{P_{{w_{j + 1} }}^{n + 1,m + 1} - P_{{w_{j} }}^{n + 1,m + 1} }}{\Updelta z}} - \lambda_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} {\frac{{P_{{w_{j} }}^{n + 1,m + 1} - P_{{w_{j - 1} }}^{n + 1,m + 1} }}{\Updelta z}}}}{\Updelta z}} + \rho_{w} g{\frac{{\lambda_{{w_{{g + {\frac{1}{2}}}} }}^{n + 1,m} - \lambda_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{\Updelta z}} = 0 \hfill \\ y_{nw} \left( {P_{nw}^{n + 1} ,P_{w}^{n + 1} } \right)^{m + 1} = - \varphi c_{{w_{j} }}^{n + 1,m} {\frac{{P_{{nw_{j} }}^{n + 1,m + 1} - P_{{nw_{j} }}^{n} - P_{{w_{j} }}^{n + 1,m + 1} - P_{{w_{j} }}^{n} }}{\Updelta t}} \hfill \\ - {\frac{{\lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1,m} {\frac{{P_{{nw_{j + 1} }}^{n + 1,m + 1} - P_{{nw_{j} }}^{n + 1,m + 1} }}{\Updelta z}} - \lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} {\frac{{P_{{nw_{j} }}^{n + 1,m + 1} - P_{{nw_{j - 1} }}^{n + 1,m1 + 1} }}{\Updelta z}}}}{\Updelta z}} + \rho_{nw} g{\frac{{\lambda_{{nw_{{g + {\frac{1}{2}}}} }}^{n + 1,m} - \lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1} }}{\Updelta z}} = 0 \hfill \\ \end{gathered} \right.\, $$
(C2)
$$ C_{{w_{j} }}^{n + 1,m} = {\frac{{\varphi c_{{w_{j} }}^{n + 1,m} }}{\Updelta t}};\quad D_{{w_{j} }}^{n + 1,m} = - {\frac{{\varphi c_{{w_{j} }}^{n + 1,m} }}{\Updelta t}} + {\frac{{\lambda_{{w_{{j + {\frac{1}{2}}}} }}^{n + 1,m} + \lambda_{{w_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{\Updelta z^{2} }}}; $$
(C3,4)
$$ R_{{w_{j} }}^{n + 1,m} = - y_{w} (S_{w}^{n + 1} ,P_{w}^{n + 1} )^{m} $$
(C5)
$$ C_{{nw_{j} }}^{n + 1,m} =- {\frac{{\varphi c_{{w_{j} }}^{n + 1,m} }}{\Updelta t}} + {\frac{{\lambda_{{nw_{{j + {\frac{1}{2}}}} }}^{n + 1,m} + \lambda_{{nw_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{\Updelta z^{2} }}};\quad D_{{nw_{j} }}^{n + 1,m} = {\frac{{\varphi c_{{w_{j} }}^{n + 1,m} }}{\Updelta t}}; $$
(C6,7)
$$ R_{{nw_{j} }}^{n + 1,m} = - f_{nw} (S_{w}^{n + 1} ,P_{w}^{n + 1} )^{m} $$
(C8)

3.2 PPN Elemental Matrices

Applying the Newton–Raphson method to Eq. 25a,b yields

$$ A_{{\alpha_{j} }}^{n + 1,m} = {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial P_{{nw_{j - 1} }} }}} = {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial \lambda_{{\alpha_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{\partial \lambda_{{\alpha_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{\partial P_{{_{{c_{j - 1} }} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j - 1} }}^{n + 1,m} }}{{dP_{{_{{nw_{j - 1} }} }}^{n + 1,m} }}} $$
(C9)
$$ B_{{\alpha_{j} }}^{n + 1,m} = {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial P_{{w_{j - 1} }} }}} = {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial \lambda_{{\alpha_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{\partial \lambda_{{\alpha_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{\partial P_{{_{{c_{j - 1} }} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j - 1} }}^{n + 1,m} }}{{dP_{{_{{w_{j - 1} }} }}^{n + 1,m} }}} $$
(C10)
$$ \begin{aligned} C_{{\alpha_{j} }}^{n + 1,m} = & {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial P_{{nw_{j} }} }}} = {\frac{{dR_{{\alpha_{j} }}^{n + 1,m} }}{{dP_{{_{{nw_{j} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial \lambda_{{\alpha_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{\partial \lambda_{{\alpha_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{\partial P_{{_{{c_{j} }} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j} }}^{n + 1,m} }}{{dP_{{_{{nw_{j} }} }}^{n + 1,m} }}} \\& + & {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial \lambda_{{\alpha_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{\partial \lambda_{{\alpha_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}{{\partial P_{{_{{c_{j} }} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j} }}^{n + 1,m} }}{{dP_{{_{{nw_{j} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial c_{{\alpha_{j} }}^{n + 1,m} }}}\,{\frac{{\partial c_{{\alpha_{j} }}^{n + 1,m} }}{{\partial P_{{_{{c_{j} }} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j} }}^{n + 1,m} }}{{dP_{{_{{nw_{j} }} }}^{n + 1,m} }}} \\ \end{aligned} $$
(C11)
$$ \begin{aligned} D_{{\alpha_{j} }}^{n + 1,m} = & {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial P_{{w_{j} }} }}} = {\frac{{dR_{{\alpha_{j} }}^{n + 1,m} }}{{dP_{{_{{w_{j} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial \lambda_{{\alpha_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{\partial \lambda_{{\alpha_{{j - {\frac{1}{2}}}} }}^{n + 1,m} }}{{\partial P_{{_{{c_{j} }} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j} }}^{n + 1,m} }}{{dP_{{_{{w_{j} }} }}^{n + 1,m} }}} \\ &+ & {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial \lambda_{{\alpha_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{\partial \lambda_{{\alpha_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}{{\partial P_{{_{{c_{j} }} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j} }}^{n + 1,m} }}{{dP_{{_{{w_{j} }} }}^{n + 1,m} }}} + {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial c_{{\alpha_{j} }}^{n + 1,m} }}}\,{\frac{{\partial c_{{\alpha_{j} }}^{n + 1,m} }}{{\partial P_{{_{{c_{j} }} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j} }}^{n + 1,m} }}{{dP_{{_{{w_{j} }} }}^{n + 1,m} }}} \\ \end{aligned} $$
(C12)
$$ E_{{\alpha_{j} }}^{n + 1,m} = {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial P_{{nw_{j + 1} }} }}} = {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial \lambda_{{\alpha_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{\partial \lambda_{{\alpha_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}{{\partial P_{{_{{c_{j + 1} }} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j + 1} }}^{n + 1,m} }}{{dP_{{_{{nw_{j + 1} }} }}^{n + 1,m} }}} $$
(C13)
$$ F_{{\alpha_{j} }}^{n + 1,m} = {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial P_{{w_{j + 1} }} }}} = {\frac{{\partial R_{{\alpha_{j} }}^{n + 1,m} }}{{\partial \lambda_{{\alpha_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}}\,{\frac{{\partial \lambda_{{\alpha_{{j + {\frac{1}{2}}}} }}^{n + 1,m} }}{{\partial P_{{_{{c_{j + 1} }} }}^{n + 1,m} }}}\,{\frac{{dP_{{c_{j + 1} }}^{n + 1,m} }}{{dP_{{_{{w_{j + 1} }} }}^{n + 1,m} }}} $$
(C14)

These coefficients above are applied for wetting and nonwetting phase (α = wnw).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ataie-Ashtiani, B., Raeesi-Ardekani, D. Comparison of Numerical Formulations for Two-phase Flow in Porous Media. Geotech Geol Eng 28, 373–389 (2010). https://doi.org/10.1007/s10706-009-9298-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-009-9298-4

Keywords

Navigation